引入统计模型的核。
我们先要手动分析平行句子,标注俄语词或短语与英语翻译的对应关系。
俄语句子mыгoвopnmomnpe
英语翻译:“wespeakaboutpeace
对齐结果:“mы”对应“we”
“гoвopnm”对应“speak”
“o”对应“about”
“mnpe”对应“peace”
然后我们需要对这种对齐的频率进行统计。
统计每个俄语词或短语在英语中的对应翻译出现的频率。
例如,在语料中,“гoвopnm”在80%的句子中翻译为“speak”,20%翻译为“talk”。
这样对于我们就可以构建概率表了。
将这些概率整理成表格,供机器进行查询。由于内存空间有限,我们暂时只存储高频词对,像出现次数前1000的词对,忽略低频情况。
当翻译某个词的时候出现多个选择,就参考概率表选择最可能的翻译。
另外就是统计相邻词的共现频率。mы经常与гoвopnm一起出现,对应wespeak,机器在翻译的时候则优先选择这个组合。
通过规则优先处理和统计方法处理模糊情况的方式,来弥补规则的不足!”
林燃从统计学的角度给他们好好上了一课。
不过这只是一个开始。
在座的研究团队们知道了林燃优化策略的轮廓,具体实践过程中还有大量的细节要进行调整、尝试和优化。
不过光是现在所说的引进概率,这一点,在座乔治敦翻译机器的资深研究员们都有种恍然大悟的感觉。
前面讲的优化算法和规则设计什么的,他们感觉有道理,但判断不了具体实践是不是真的管用。
但这统计学方法的引入,光靠想象就知道,能够显著提升乔治敦翻译机器的效果。
当天的工作结束后,红石基地周边的小餐馆里,加尔文和多斯特尔特坐在角落,面前是两杯当地特色的啤酒。
加尔文放下笔记本,叹了口气说:“利昂,我们真的是蠢货吗?”
今天听完之后,加尔文都要怀疑人生了。
林燃提出了一整套的解决方案,这套解决方案里完整也就算了,其中很多点他们都想到过,但想不到要